🎉 AI Engineers: Aporia's 2024 Benchmark Report and mutiSLM has been released. View the report here>>

Aporia How to's

How to Replace NaN Values by Zeros in a DataFrame?

2 min read
replace nan with 0 pandas pyspark multiple columns

NaN values are also called missing values and simply indicate the data we do not have. We do not like to have missing values in a dataset but it’s inevitable to have them in some cases. Therefore, we need to learn how to handle them properly. 

There are different ways of handling missing values. In this how-to article, we will learn how to replace NaN values by zeros in Pandas and PySpark DataFrames.

How to Rename a Column in Pandas and Pyspark DataFrame


The fillna function can be used for replacing missing values. We just need to write the value to be used as the replacement inside the function.

# Replace all missing values in the DataFrame
df = df.fillna(0)

# Replace missing values in a specific column
df["f2"] = df["f2"].fillna(0)


We can either use fillna or na.fill function. They are aliases and return the same results.

# Replace all missing values in the DataFrame
df = df.na.fill(0)

# Replace missing values in a specific column
df = df.na.fill(0, subset=["f2"])

This question is also being asked as:

  • How to replace NaN values in Python?
  • How to replace NaN value with some other value in Pandas?

People have also asked for:

Green Background

Control All your GenAI Apps in minutes