The most advanced ML Observability platform
We’re super excited to share that Aporia is now the first ML observability offering integration to the Databricks Lakehouse Platform. This partnership means that you can now effortlessly automate your data pipelines, monitor, visualize, and explain your ML models in production. Aporia and Databricks: A Match Made in Data Heaven One key benefit of this […]
Start integrating our products and tools.
We’re excited 😁 to share that Forbes has named Aporia a Next Billion-Dollar Company. This recognition comes on the heels of our recent $25 million Series A funding and is a huge testament that Aporia’s mission and the need for trust in AI are more relevant than ever. We are very proud to be listed […]
Machine Learning or ML refers to the practice of teaching computers how to learn without explicit programming. According to its name, it gives computers the ability to learn, making them more human-like. Essentially machine learning studies computer algorithms that can improve automatically through experience and by the use of data. It is considered to be a part of artificial intelligence.
A machine learning algorithm builds a model from sample data, known as “training data”, in order to predict events without having been explicitly programmed to do so. There are a wide variety of applications for machine learning algorithms, such as in medicine, email filtering, speech recognition, and computer vision, where conventional algorithms would be difficult or unfeasible to develop.
ML is closely related to computational statistics, which also uses computers to make predictions. While computational statistics are aimed at making predictions about population values, machine learning is aimed at making predictions about individual objects, and their class labels.